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Use of a Masked Aldol Unit in the Synthesis of the Right Side of FK-506
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Summary: A strategy for the synthesis of the C;g~C,; right
side portion (2) of the immunosuppressant FK-506 is de-
veloped.

A synthetic strategy for the construction of the immu-
nosuppressant FK-506! must consider, in addition to the
assembly of the novel «,3-diketo amide hemiacetal, a
means for the formation and protection of the aldol portion
represented by the Cy~Cqyy carbon chain. Since the lability
of this grouping toward dehydration and retro-aldol
cleavage is well documented,? an initial goal of this project
was the development of a subunit that would effectively
resist these common aldol-type side reactions, would be
useful as a synthetic intermediate for further skeletal
construction, and would easily generate the desired aldol
structure under very mild conditions at a late synthetic
stage. Concurrent work® in these laboratories suggested
that a masked aldol unit in the form of a spiroenone would
serve this purpose. In addition to the protection of the
sensitive aldol structure, such a spiroenone offered the
opportunity for the assembly of the C;4~C,; portion of
FK-506 (and other related macrolactones?) through con-
jugate addition reactions. A route to a suitably blocked
version of the «,8-diketoamide portion of FK-506 has been
reported!! from these laboratories and an efficient synthesis
of the right-side 2 of this molecule that implements this
novel aldol blocking group strategy is reported here
(Scheme I).

The key synthetic intermediate for the preparation of
the right-side 2 is spiroenone 9, the construction of which
was elaborated from (R)-(benzyloxy)propanal® (3) (see
Chart I). Stereoselective introduction of the vicinal
asymmetric centers at Cy5 and Coc® was efficiently accom-
plished by the addition of Brown’s (Z)-crotyldiisopino-
campheylborane.”
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Scheme I. Synthetic Plan for the Right Side of
Immunosuppressant FK-506
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Chart I. Synthesis of Right-Side Portion of FK-506
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The high diastereoselectivity of this process® is clearly
the result of the stereochemically matched combination
of substrate and reagent.? After silylation, the olefin 4
was cleanly obtained in excellent yield.

Stereoselective conversion of the olefin 4 to the required
epoxide 7 presents a delicate stereochemical problem.!®

(8) 97% de as determined by GC analysis.

(9) (Z)-Crotyldiisopinocampheylborane derived from (+)-a-pinene was
used.

(10) An intramolecular epoxidation of the unprotected homoallyl al-
cohol 10 via the corresponding iodo carbonate 11 led only to five mem-
bered ring formation:
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Expectedly, direct oxidation with MCPBA gave no ste-
reoselection. Hydroxylation with the osmium tetroxide-
/NMO system!! in the absence of chiral catalysts led to
a 1:3.5 ratio of isomeric diols 5 and 6 in 77% yield. Ap-
plication of the recently described Sharpless catalytic
dihydroxylation procedure!? with hydroquinidine p-
chlorobenzoate afforded a 62% yield of a 1:1.8 ratio of the
same diols. When dihydroquinine p-chlorobenzoate was
used as an auxiliary, the diols 5 and 6 were prepared in
72% and a 1:5 ratio of stereoisomers. The configuration
at Cy, of the readily separable diols 5 and 6 was determined
by NMR analysis of the derived acetonides A% and B,!?
which were individually prepared from each isomer by
standard means.

Treated under the proper set of reaction conditions, both
diols 5 and 6 are suitable precursors of the epoxide 7.
Thus, tosylation and then internal displacement of the diol
5 led in excellent yield to the desired epoxide 7. The
somewhat more elaborate procedure used to convert the
diol 6 to the same epoxide 7 was hardly less efficient, and
the combined process of hydroxylation and then epoxide
formation proved to be a useful means for the transfor-
mation of the olefin 4 to the epoxide 7.

With the epoxide 7 in hand, the formation of the key
intermediate spiroenone 9 followed precedence® developed
in the model studies of such spiroenones. As a result of
the somewhat more complex substitution of epoxide 7,
however, the reaction conditions and reagents required
some modification and rather than utilization of LiCl ca-
talysis, the use of the 5-lithiofurfuryl alcohol ethers and
BF;.Et,0 catalysis proved more successful. After treat-
ment with mild acid, the required diol 8 was isolated in
very satisfying yield.

Oxidation of the diol 8 with MCPBA proceeded in a
satisfactory manner, but acetalization® with paraform-
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aldehyde and sulfuric acid catalysis completely destroyed
this delicate system. Utilization of the ketalization pro-
cedure® with 2-methoxypropene and HCl or PPTS cata-
lysis proved to be an excellent alternative and the desired
spiroenone was formed cleanly.

This masked aldol system is a particularly attractive
intermediate, since functionality is present for the selective
addition of a variety of cyclohexylmethylene substituents
at the benzyloxy position and various carbon chains
through conjugate addition to the enone system. For the
FK-506 synthesis itself, a five-carbon olefinic chain is re-
quired. Conventional wisdom suggests the use of a vinyl
cuprate reagent derived in two steps from ((tert-butyldi-
methylsilyl)oxy)-2(S)-methyl-4-pentyne, and while this
process ultimately was successful, a more direct zirco-
nocene dichloride catalyzed carboalumination!®/cuprate
exchange!® sequence accomplished the same result in one
step and satisfactory yield. One stereoisomer 2 resulted
from either addition process, and based on previous ex-
perience® and NMR analysis,!? the a(axial) orientation of
the side chain and the E stereochemistry of the trisub-
stituted double bond is assigned. Since fragmentation of
similar spiroketal ketals has been shown® to be a mild
process, all that is necessary to render this addition product
a viable template for the right side of FK-506 is the
blocking of the saturated ketone. This was easily accom-
plished through L-selectride (Aldrich) reduction of spiro-
enone 9 followed by protection with 2-methoxypropene/
PPTs and the requisite right-side intermediate 2 thus
became available in 30% overall yield from 3.

The success of this scheme demonstrates the value of
the spiroenone system as a useful synthetic strategy and
further transformations toward the completion of the
FK-506 synthesis are being actively pursued.!®
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